

VISHAY IRF620 Siliconix Power MOSFET Instruction Manual

Home » VISHAY » VISHAY IRF620 Siliconix Power MOSFET Instruction Manual



Contents

- 1 VISHAY IRF620 Siliconix Power **MOSFET**
- **2 FEATURES**
- **3 DESCRIPTION**
- **4 SPECIFICATIONS**
- **5 TYPICAL CHARACTERISTICS**
- **6 DIMENSIONS**
- 7 Disclaimer
- 8 Documents / Resources
 - 8.1 References
- 9 Related Posts

VISHAY IRF620 Siliconix Power MOSFET

FEATURES

- Dynamic dv/dt rating
- · Repetitive avalanche rated
- · Fast switching
- · Ease of paralleling
- Simple drive requirements
- Material categorization: for definitions of compliance please see www.vishay.com/doc?99912

Note

This datasheet provides information about parts that are RoHS-compliant and / or parts that are non RoHS-compliant. For example, parts with lead (Pb) terminations are not RoHS-compliant. Please see the information / tables in this datasheet for details

N-Channel MOSFET

N-Channel MOSFET

DESCRIPTION

Third generation power MOSFETs from Vishay provide the designer with the best combination of fast switching, ruggedized device design, low on-resistance and cost-effectiveness. The TO-220AB package is universally preferred for all commercial-industrial applications at power dissipation levels to approximately 50 W. The low thermal resistance and low package cost of the TO-220AB contribute to its wide acceptance throughout the industry

PRODUCT SUMMARY

V _{DS} (V)	200		
RDS(on) (W)	V _{GS} = 10 V	0.80	
Q _g max. (nC)	14		
Q _{gs} (nC)	3.0		
Q _{gd} (nC)	7.9		
Configuration	Single		

ORDERING INFORMATION

Package	TO-220AB
Lead (Pb)-free	IRF620PbF
Lead (Pb)-free and halogen-free	IRF620PbF-BE3

ABSOLUTE MAXIMUM RATINGS (TC = 25 °C, unless otherwise noted)

PARAMETER			SYMBOL	LIMIT	UNIT	
Drain-source voltage			VDS	200	V	
Gate-source voltage			VGS	± 20	,	
Continuous drain current	V _{GS} at 1 0 V	T _C = 25 °	- I _D	5.2		
Continuous arain current		T _C = 100 °C		3.3	A	
Pulsed drain current a			IDM	18		
Linear derating factor				0.40	W/°C	
Single pulse avalanche energy b			EAS	110	mJ	
Repetitive avalanche current a			IAR	5.2	А	
Repetitive avalanche energy a			EAR	5.0	mJ	
Maximum power dissipation $T_C = 25 ^{\circ}C$			P _D	50	W	
Peak diode recovery dV/dt c			dv/dt	5.0	V/ns	
Operating junction and storage temperature range			TJ, Tstg	-55 to +150		
Soldering recommendations (peak temp erature) d	For 10 s			300	°C	
Mounting torque	6-32 or M3 screw			10	lbf · in	
Modifiling torque				1.1	N · m	

Notes

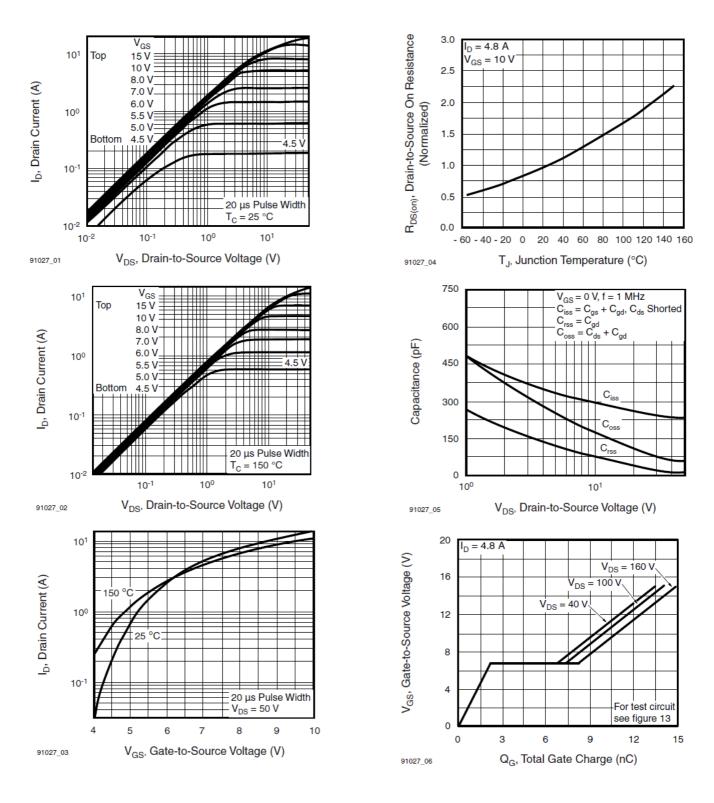
- 1. **a**. Repetitive rating; pulse width limited by maximum junction temperature (see fig. 11)
- 2. **b**. VDD = 50 V, starting TJ = 25 °C, L = 6.1 mH, Rg = 25 Ω , IAS = 5.2 A (see fig. 12)
- 3. **c**. ISD \leq 5.2 A, di/dt \leq 95 A/ μ s, VDD \leq VDS, TJ \leq 150 °C
- 4. **d**. 1.6 mm from case

THERMAL RESISTANCE RATINGS

PARAMETER	SYMBOL	TYP.	MAX.
Maximum junction-to-ambient	RthJA	_	62
Case-to-sink, flat, greased surface	RthCS	0.50	_
Maximum junction-to-case (drain)	RthJC	_	2.5

SPECIFICATIONS

(TJ = 25 °C, unless otherwise noted)


PARAMETER	SYMBOL	TEST CONDITIONS		MIN.	TYP.	MAX	UNI T
Static							I
Drain-source breakdown voltage	VDS	V _{GS} = 0 V,	I _D = 250 μA	200	_	-	V
V _{DS} temperature coefficient	DV _{DS} /T _J	Reference	to 25 °C, I _D = 1 mA	-	0.29	_	V/°C
Gate-source threshold voltage	VGS(th)	V _{DS} = V _{GS} ,	I _D = 250 μA	2.0	_	4.0	٧
Gate-source leakage	IGSS	V _{GS} = ± 20	V _{GS} = ± 20 V		-	± 10	nA
		V _{DS} = 200	V, V _{GS} = 0 V	_	_	25	
Zero gate voltage drain current	IDSS	V _{DS} = 160 °C	V _{DS} = 160 V, V _{GS} = 0 V, T _J = 125 °C		_	250	μΑ
Drain-source on-state resistance	RDS(on)	V _{GS} = 10	I _D = 3.1 A b	_	_	0.80	w
Forward transconductance	gfs	V _{DS} = 50 V	, I _D = 3.1 A	1.5	-	_	S
Dynamic					1		
Input capacitance	Ciss	V _{GS} = 0 V, V _{DS} = 25 V,		_	260	-	
Output capacitance	Coss		f = 1.0 MHz, see fig. 5		100	_	pF
Reverse transfer capacitance	Crss				30	-	
Total gate charge	Qg			_	_	14	
Gate-source charge	Qgs	V 10	$I_D = 4.8 \text{ A}, V_{DS} = 16$	_	_	3.0	
Gate-drain charge	Qgd	V _{GS} = 10	0 V, see fig. 6 and 13 b	_	_	7.9	nC
Turn-on delay time	td(on)		1	-	7.2	_	
Rise time	t _r			_	22	_	
Turn-off delay time	td(off)			_	19	_	

					,
t _f	G S	_	13	_	ns
R _g	VPP TMHZ, open drain A,	0.8	_	3.5	W
L _D	Between lead, = 20 W, see fig. 1	_	4.5	_	
L _S	6 mm (0.25") from package and center of Gdie contactS	_	7.5	_	nH
acteristics	<u>I</u>				
Is	MOSFET symbol	_	_	5.2	
ISM	showing the integral reverse G p - n junction diode S	_	_	18	Α
VSD	$T_J = 25 \text{ °C}, I_S = 5.2 \text{ A}, V_{GS} = 0 \text{ V}$ b	_	_	1.8	V
trr	T _J = 25 °C, I _F = 4.8 A, dl/dt = 100	_	150	300	ns
Qrr	A/ms	_	0.91	1.8	μC
ton	Intrinsic turn-on time is negligible (and L _D)	turn-on	is domi	nated b	y L _S
	Rg LD LS ISM VSD trr Qrr	Rg	Rg YP MH2 Ver age = 20 W, see fig.d — 6 mm (0.25") from package and center of Gdie contacts Ls MOSFET symbol — showing the integral reverse G p — n junction diode S VSD T _J = 25 °C, 1 _S = 5.2 A, V _{GS} = 0 V — trr T _J = 25 °C, 1 _F = 4.8 A, dl/dt = 100 A/ms Intrinsic turn-on time is negligible (turn-on time)	Top Top	Top

- 1. a. Repetitive rating; pulse width limited by maximum junction temperature (see fig. 11)
- 2. **b**. Pulse width \leq 300 μ s; duty cycle \leq 2 %

TYPICAL CHARACTERISTICS

(25 °C, unless otherwise noted)

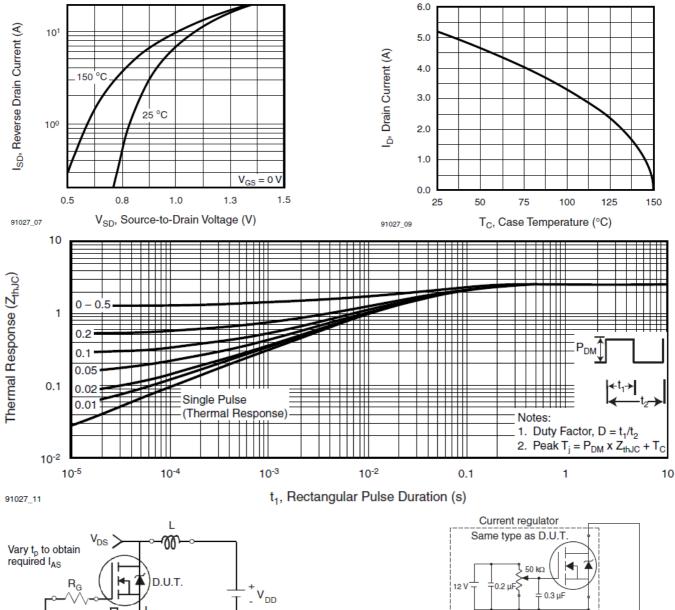


Fig. 12a - Unclamped Inductive Test Circuit

0.01 Ω

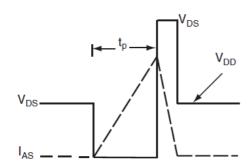


Fig. 12b - Unclamped Inductive Waveforms

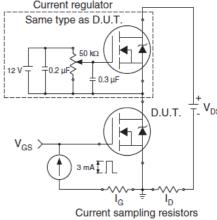
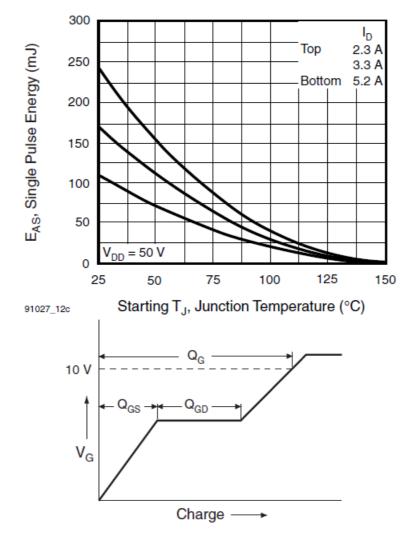
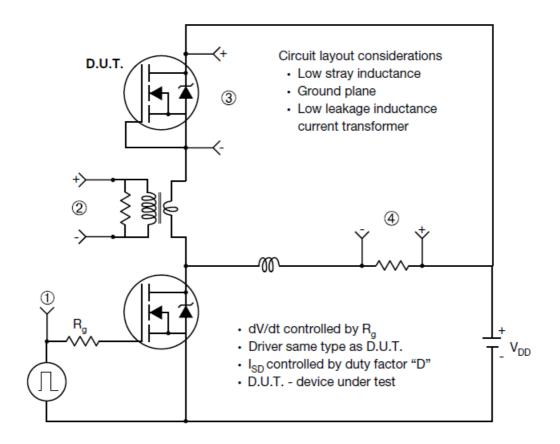
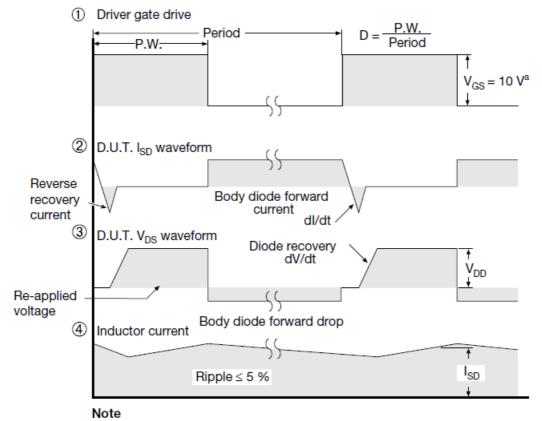
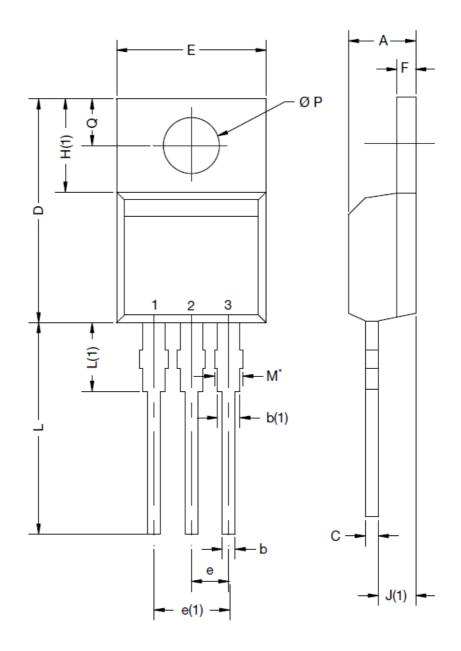





Fig. 13b - Gate Charge Test Circuit


Peak Diode Recovery dV/dt Test Circuit

a. $V_{GS} = 5 \text{ V}$ for logic level devices

DIMENSIONS

D114	MILLIMETERS		INCHES			
DIM.	MIN.	MAX.	MIN.	MAX.		
А	4.24	4.65	0.167	0.183		
b	0.69	1.02	0.027	0.040		
b(1)	1.14	1.78	0.045	0.070		
С	0.36	0.61	0.014	0.024		
D	14.33	15.85	0.564	0.624		
Е	9.96	10.52	0.392	0.414		
е	2.41	2.67	0.095	0.105		
e(1)	4.88	5.28	0.192	0.208		
F	1.14	1.40	0.045	0.055		
H(1)	6.10	6.71	0.240	0.264		
J(1)	2.41	2.92	0.095	0.115		
L	13.36	14.40	0.526	0.567		
L(1)	3.33	4.04	0.131	0.159		
Ø P	3.53	3.94	0.139	0.155		
Q	2.54	3.00	0.100	0.118		
ECN: E21-0621-Rev. D, 04-Nov-2021 DWG: 6031						

Note

 M^{\star} = 0.052 inches to 0.064 inches (dimension including protrusion), heatsink hole for HVM

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO

IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE. Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product. Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims

- 1. any and all liability arising out of the application or use of any product,
- 2. any and all liability, including without limitation special, consequential or incidental damages, and
- 3. any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Hyperlinks included in this datasheet may direct users to third-party websites. These links are provided as a convenience and for informational purposes only. Inclusion of these hyperlinks does not constitute an endorsement or an approval by Vishay of any of the products, services or opinions of the corporation, organization or individual associated with the third-party website. Vishay disclaims any and all liability and bears no responsibility for the accuracy, legality or content of the third-party website or for that of subsequent links. Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see http://www.vishay.com/ppg?91027.

For technical questions, contact: <a href="https://hvm.com.nc.nlm

THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000

Documents / Resources

VISHAY IRF620 Siliconix Power MOSFET [pdf] Instruction Manual IRF620, Siliconix Power MOSFET, IRF620 Siliconix Power MOSFET, Power MOSFET, MOSFE T

References

- <u>applications.no</u>
- vishay.com/doc?91000
- ▼ IRF620 Power MOSFET | Vishay

Manuals+,